45,724 research outputs found

    Mathematics Specialists in Elementary Schools: The Arlington Story

    Get PDF

    "Not under bondage: biblical divorce for abuse, adultery and desertion" by Barbara Roberts

    Get PDF
    Review of Barbara Roberts, Not Under Bondage: Biblical Divorce for Abuse, Adultery and Desertion (Victoria, Australia: Maschil Press, 2008)Publisher PD

    Downs and Acrosses: Textual Markup on a Stroke Based Level

    Get PDF
    Textual encoding is one of the main focuses of Humanities Computing. However, existing encoding schemes and initiatives focus on 'text' from the character level upwards, and are of little use to scholars, such as papyrologists and palaeographers, who study the constituent strokes of individual characters. This paper discusses the development of a markup system used to annotate a corpus of images of Roman texts, resulting in an XML representation of each character on a stroke by stroke basis. The XML data generated allows further interrogation of the palaeographic data, increasing the knowledge available regarding the palaeography of the documentation produced by the Roman Army. Additionally, the corpus was used to train an Artificial Intelligence system to effectively 'read' in stroke data of unknown text and output possible, reliable, interpretations of that text: the next step in aiding historians in the reading of ancient texts. The development and implementation of the markup scheme is introduced, the results of our initial encoding effort are presented, and it is demonstrated that textual markup on a stroke level can extend the remit of marked-up digital texts in the humanities

    Simple purely infinite C*-algebras and n-filling actions

    Get PDF
    Let nn be a positive integer. We introduce a concept, which we call the nn-filling property, for an action of a group on a separable unital CC^*-algebra AA. If A=C(Ω)A=C(\Omega) is a commutative unital CC^*-algebra and the action is induced by a group of homeomorphisms of Ω\Omega then the nn-filling property reduces to a weak version of hyperbolicity. The nn-filling property is used to prove that certain crossed product CC^*-algebras are purely infinite and simple. A variety of group actions on boundaries of symmetric spaces and buildings have the nn-filling property. An explicit example is the action of Γ=SLn(Z)\Gamma=SL_n({\bf Z}) on the projective nn-space.Comment: 16 page

    Image and interpretation using artificial intelligence to read ancient Roman texts

    Get PDF
    The ink and stylus tablets discovered at the Roman Fort of Vindolanda are a unique resource for scholars of ancient history. However, the stylus tablets have proved particularly difficult to read. This paper describes a system that assists expert papyrologists in the interpretation of the Vindolanda writing tablets. A model-based approach is taken that relies on models of the written form of characters, and statistical modelling of language, to produce plausible interpretations of the documents. Fusion of the contributions from the language, character, and image feature models is achieved by utilizing the GRAVA agent architecture that uses Minimum Description Length as the basis for information fusion across semantic levels. A system is developed that reads in image data and outputs plausible interpretations of the Vindolanda tablets

    Synchronizing Sequencing Software to a Live Drummer

    Get PDF
    Copyright 2013 Massachusetts Institute of Technology. MIT allows authors to archive published versions of their articles after an embargo period. The article is available at

    An Expanding Locally Anisotropic (ELA) Metric Describing Matter in an Expanding Universe

    Get PDF
    It is suggested an expanding locally anisotropic metric (ELA) ansatz describing matter in a flat expanding universe which interpolates between the Schwarzschild (SC) metric near point-like central bodies of mass 'M' and the Robertson-Walker (RW) metric for large radial coordinate: 'ds^2=Z(cdt)2 - 1/Z (dr1-(Hr1/c) Z^(alpha/2+1/2)(cdt))^2-r1^2 dOmega', where 'Z=1-U' with 'U=2GM/(c^2r1)', 'G' is the Newton constant, 'c' is the speed of light, 'H=H(t)=\dot(a)/a' is the time-dependent Hubble rate, 'dOmega=dtheta^2+sin^2(theta) dvarphi^2' is the solid angle element, 'a' is the universe scale factor and we are employing the coordinates 'r1=ar', being 'r' the radial coordinate for which the RW metric is diagonal. For constant exponent 'alpha=alpha0=0' it is retrieved the isotropic McVittie (McV) metric and for 'alpha=alpha0=1' it is retrieved the locally anisotropic Cosmological-Schwarzschild (SCS) metric, both already discussed in the literature. However it is shown that only for constant exponent 'alpha=alpha0> 1' exists an event horizon at the SC radius 'r1=2GM/c^2' and only for 'alpha=alpha0>= 3' space-time is singularity free for this value of the radius. These bounds exclude the previous existing metrics, for which the SC radius is a naked extended singularity. In addition it is shown that for 'alpha=alpha0>5' space-time is approximately Ricci flat in a neighborhood of the event horizon such that the SC metric is a good approximation in this neighborhood. It is further shown that to strictly maintain the SC mass pole at the origin 'r1=0' without the presence of more severe singularities it is required a radial coordinate dependent correction to the exponent 'alpha(r1)=alpha0+alpha1 '2GM/(c^2 r1)' with a negative coefficient 'alpha1<0'. The energy-momentum density, pressures and equation of state are discussed.Comment: 6 pages; 2 figures; covers some of the derivations in arXiv:0907.0847 with corrected terminology and a new discussion of the event horizon

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Principals Partnering to Build a Vision for School Mathematics

    Get PDF
    corecore